Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design) Friedrich-Alexander-Universität Erlangen-Nürnberg

MiniklausurGrundlagen der Technischen Informatik

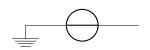
24. Juni 2016

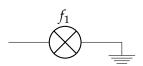
Name	
Matrikelnummer	
Studienrichtung	

Termin bitte ankreuzen, da die Rückgabe in den Übungen erfolgt!

Aufgabe	1	2	3	Σ
Max. Punkte	10	10	10	30
erreichte Punkte				

Aufgabe 1 (Schaltnetze)


- a) Nennen Sie je einen Vor- und Nachteil von CMOS gegenüber Einschalterrealisierungen wie NMOS oder PMOS. (2 Punkte)
- b) Implementieren Sie folgendes Gatter in CMOS mit möglichst wenigen Transistoren:


$$x_3 \xrightarrow{x_2} \xrightarrow{x_1} f_0$$

Als Eingänge stehen Ihnen nur x_1 , x_2 und x_3 zur Verfügung, nicht jedoch deren Komplement. (5 Punkte)

$$f_1(x_3,x_2,x_1,x_0) = (x_3 + \overline{x_2})(x_2 + \overline{x_1})(x_1 + \overline{x_0})$$

- a) Gegeben sei ein Medwedew-Automat, der die nachfolgende Zustandsübergangstabelle besitzt. Das Signal i stellt dabei ein binäres Eingangssignal dar, q_0 und q_1 codieren den internen Zustand.
 - i) Vervollständigen Sie folgende Zustandsübergangstabelle:

(2 Punkte)

q_1	q_0	i	$q_1' q_0'$	D_1	J_0	K_0
0	0	0		0	1	-
0	0	1		0	0	-
0	1	0		0	-	0
0	1	1		0	-	1
1	0	0		0	1	-
1	0	1		0	0	-
1	1	0		1	-	0
1	1	1		1	-	1

- ii) Bestimmen Sie minimierte Ansteuerfunktionen für die zur Zustandsspeicherung verwendeten (D-/JK-) Flipflops. (3 Punkte)
- b) Geben Sie den zugehörigen Automatengraphen an.

(2 Punkte)

c) Geben Sie den allgemeinen Aufbau eines Mealy-Automaten als Blockschaltbild an. (2 Punkte)

d) Beschreiben Sie die Unterschiede zwischen Schaltnetz und Schaltwerk.

Aufgabe 3 (Minimierung)

(10 Punkte)

a) Was versteht man unter dem Begriff Kernimplikat?

(1 Punkt)

b) Wann ist eine Boolesche Funktion in KNF?

(1 Punkt)

c) Gegeben sei folgendes Symmetriediagramm für eine Schaltfunktion $f_2(e,d,c,b,a)$. Bestimmen sie alle Primimplikanten von f_2 und markieren sie alle Kerne eindeutig. (5 Punkte)

			7						
	1	0	1	-	0	0	0	1	
b	0	-	1	0	0	-	-	0	
U	0	1	1	0	0	-	-	0	
·	1	0	1	-	0	0	0	-	
				(2	-	2		, ,

d) Stellen Sie für die folgende Überdeckungstabelle einer Schaltfunktion $f_3(e,d,c,b,a)$ den Petrick-Ausdruck auf. Ermitteln Sie durch Vereinfachung dieses Ausdrucks alle kostenminimalen Überdeckungen und geben Sie deren schaltalgebraische Ausdrücke an. (3 Punkte)

		j							
k	PI	3	6	8	12	20	30	p_i	c_i
0	ēdīb			×				A	6
1	ēdbā	C		×	×			В	5
2	ēca	×						С	4
3	eāā					×		D	3
4	ēdb	×	×					Е	3
5	dbā		×					F	3
6	сā		×		×	×	×	G	1