

Universität Erlangen-Nürnberg Lehrstuhl für Hardware-Software-Co-Design Prof. Dr.-Ing. Jürgen Teich

1. Miniklausur

Grundlagen der Technischen Informatik

12.11.2014

Name	
Matrikelnummer	
Studienrichtung	

Mo. 10-12 □	Mo. 10-12 □	Mo. 12-14 □	Mo. 16-18 □	Di. 14-16 □
H16	02.112-128	K2-119	H10	Н6
Achim Herrmann	Jan Spieck	Philipp Mengs	Burkhard Ringlein	Philipp Mengs
Mi. 12-14 □	Mi. 12-14 □	Mi. 14-16 □	Do. 10-12 □	Do. 10-12 □
H10	01.255-128	01.150-128	H16	A 2.16
Jonathan Krebs	Jan Spieck	Tilman Michaeli	Christian Knell	Tilman Michaeli
	Do. 12-14 □	Do. 14-16 □	Fr. 14-16 🗆	
	1.84	01.255-128	01.150-128	
	Christian Knell	Achim Hermann	Burkhard Ringlein	

Termin bitte ankreuzen ⊠! Die Rückgabe der Miniklausuren erfolgt in den Übungen.

Aufgabe 1	
Aufgabe 2	
Aufgabe 3	
Punkte	/30

a) Wie kann man $+\infty$ im Format des IEEE-Standards 754 darstellen?

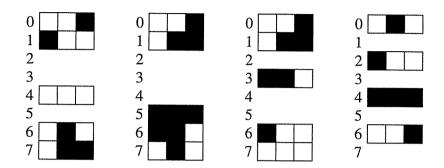
(1 Punkt)

b) Welche der beiden folgenden, im IEEE-Standard 754 dargestellten, Zahlen ist größer? (1 Punkt)

 $x_2 = 11101010$ 011111111 00011100 00011100

c) Wie lautet die im Format des IEEE-Standards 754 gegebene Gleitkommazahl (einfache Genauigkeit) 01000010 01000011 00000000 000000000 im Dezimalsystem? (4 Punkte)

d) Multiplizieren Sie die beiden Gleitkommazahlen $x_3 = 1\,0111\,11001\,$ und $x_4 = 0\,0110\,01010.$ Gegeben sei hierbei folgendes Format für Gleitkommazahlen: (4 Punkte)

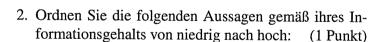

Vorzeichen (V): 1 Bit breit (1: negativ)

Exponent (E): 4 Bit breit

Mantisse (M): 5 Bit breit (1,M wie beim IEEE Format üblich)

Anordnung: VEM

 a) Streichen Sie unter den folgenden Abbildungen diejenigen durch, die keinen zyklischen Gray-Code darstellen können. Vervollständigen Sie die restlichen Abbildungen zu einem zyklischen Gray-Code.
 (4 Punkte)

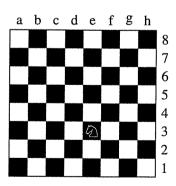


b) Es seien die Bildungsvorschriften für die Prüfbits des (7,4)-Hamming-Codes gegeben (d.h. 4 Datenbits x_1 bis x_4 und 7-4=3 Prüfbits y_1 bis y_3). Korrigieren Sie die folgenden drei Datenwörter, gegeben als $x_4x_3x_2x_1.y_3y_2y_1$, die jeweils einen Bitfehler enthalten. (3 Punkte)

$$1111.110 \rightarrow y_1 = x_4 \oplus x_2 \oplus x_1$$

 $1110.010 \rightarrow y_2 = x_4 \oplus x_3 \oplus x_1$
 $1001.011 \rightarrow y_3 = x_4 \oplus x_3 \oplus x_2$

- c) Im Folgenden soll die Position einer Figur auf einem Schachbrett mit 8×8 Feldern übertragen werden. Es wird angenommen, dass jede Position dieselbe Wahrscheinlichkeit $p = \frac{1}{64}$ besitzt.
 - 1. Berechnen Sie die Entropie H dieser Signalquelle.


(1 Punkt)

A := "Die Figur steht auf einem weißen Feld."

B := "Die Figur steht auf e3."

C := "Die Figur steht in Reihe 5."

3. Wieviele Möglichkeiten gibt es, die Position f2 optimal zu codieren?

(1 Punkt)

a) Konvertieren Sie die Hexadezimalzahl AC_{16} in das Dezimalsystem sowie in das Oktalsy (2 P	vstem. runkte)
1. Dezimalsystem:	
2. Oktalsystem:	
b) Konvertieren Sie die Dezimalzahl 2014 ₁₀ in das 11er-System. (2 Po	unkte)
c) Gegeben ist die Dezimalzahl –68 ₁₀ . Stellen Sie diese Zahl in einer 8 Bit breiten V chen/Betragsdarstellung sowie 2er-Komplementdarstellung dar. (2 P	Vorzei- unkte)
1. Vorzeichen-Betragsdarstellung:	
2. 2er-Komplementdarstellung:	
d) Addieren Sie die beiden BCD-Zahlen 0111 0101 _{BCD} und 0100 1001 1000 _{BCD} im System. Geben Sie dazu den vollständigen Rechenweg an und konvertieren Sie das Ergin das Dezimalsystem	