

Universität Erlangen-Nürnberg Lehrstuhl für Hardware-Software-Co-Design Prof. Dr.-Ing. Jürgen Teich

1. Miniklausur

Grundlagen der Technischen Informatik

24.05.2013

Name		
Matrikelnummer		
Studienrichtung		
Mi. 10-12	Mi. 14-16	Fr. 14-16
02.112-128 □	01.255-128 □	01.151-128 □
Philipp Mengs	Christopher Ott	Achim Herrmann

Termin bitte ankreuzen \boxtimes ! Die Rückgabe der Miniklausuren erfolgt in den Übungen.

a) Vereinfachen sie folgende schaltalgebraischen Ausdrücke so weit wie möglich: (5 Punkte) i) $\overline{a} \cdot b + b \cdot a + c \cdot \overline{c} \cdot d$

ii)
$$c \cdot b + \overline{b} \cdot a + a \cdot c + \overline{d \cdot c + \overline{d} \cdot c}$$

iii)
$$\overline{a \cdot b + b\overline{c}} + \overline{a} \cdot b \cdot c$$

b) Erstellen Sie einen Huffman-Codierungsbaum für die folgenden Auftrittshäufigkeiten von Zeichen einer gegebenen Zeichenmenge. Geben Sie auch alle Teilschritte an. (5 Punkte)

Zeichen	A	В	C	D	E	F	G
Häufigkeit	5	6	15	2	1	40	4

Aufgabe 2 (Zahlensysteme/Gleitkommarechnung)

(10 Punkte)

a) Gegeben ist die Binärzahl 1001 0110 1010 0101₂ (38565₁₀).
Stellen Sie die Ergebnisse der Teilaufgaben jeweils im Binärsystem dar.

(2 Punkte)

- i) Multiplizieren Sie die Zahl mit 32₁₀.
- ii) Dividieren Sie die Zahl durch 16₁₀.
- b) Geben Sie für die folgenden Zahlen eine gültige Repräsentation im Binärsystem an!

(3 Punkte)

- i) 57,40625₁₀
- ii) 2120₃
- b) Gegeben ist das folgende Format für Gleitkommazahlen: Gleitkommazahl $x = (-1)^V \cdot 2^E \cdot M$.

Die Kodierung der Zahl ist durch den IEEE 754-Standard bestimmt, wobei hier für das Vorzeichen V:1 Bit, die Charakteristik C:4 Bit und die Mantisse M:8 Bit verwendet werden sollen. Die Werte 0 und 15 der Charakteristik sind für die Angaben von $+/-\infty$ und NaN reserviert. Gegeben sind weiterhin die beiden Gleitkommazahlen

 $A:1_0011_01111001$ und $B:1_0101_01110101$. Führen Sie die Addition der beiden Zahlen in Gleitkommaarithmetik durch, und geben Sie das Ergebnis in dem oben eingeführten Format an. (5 Punkte)

a) Entwickeln Sie die Schaltfunktion $f(x,y,z) = y + z \cdot x + \overline{z} \cdot \overline{x}$ durch Anwendung des Entwicklungssatzes der Schaltalgebra. Nehmen Sie dabei die lexikographische Variablenordnung x < y < z an. (3 Punkte)

b) Realisieren Sie die Schaltfunktion f(x,y,z) aus Teilaufgabe a) unter ausschließlicher Verwendung von NAND-Gattern mit 2 Eingängen. (3 Punkte)

c) Bestimmen Sie mit Hilfe des gegebenen Symmetriediagramms alle Primimplikanten der darin spezifizierten Schaltfunktion g(a,b,c,d) und geben Sie deren schaltalgebraische Ausdrücke an. (4 Punkte)