DEPARTMENT INFORMATIK

Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstraße 3, 91058 Erlangen 14.02.2011

Klausur zu

Grundlagen der Rechnerarchitektur und -organisation

Vorname

Name

Geb.-Datum

Matrikelnummer

Aufgabe

max. Punktzahl

erreichte Punktzahl

1

14

15

3

12

5

15

6

18

7

17

Bonus

15

Summe

115

• Es sind keine Hilfsmittel erlaubt (Ausnahme: 1 DIN-A4 Blatt mit Notizen)!								
• Legen Sie den Ausweis (mit Lichtbild!) griffbereit auf den Platz!								
• Dieses Aufgabenheft umfasst 20 Seiten. Überprüfen Sie die Vollständigkeit!								
• Gesondert beigelegte Blätter werden nicht bewertet.								
Schreiben Sie deutlich! Unleserliches wird nicht bewertet!								
• Es darf nicht mit der Farbe rot geschrieben werden!								
 Offensichtlich falsche oder überflüssige Antworten können zu Punktabzug führen! 								
Durch meine Unterschrift bestätige ich								
• den Empfang der vollständigen Klausurunterlagen								
 den Empfang der vollständigen Klausurunterlagen die Kenntnisnahme der obigen Informationen. 								
Erlangen, den 14.02.2011(Unterschrift)								
Ich bin damit einverstanden, dass mein Prüfungsergebnis der Klausur unter Angabe der Matrikel-Nummer veröffentlicht wird.								
Erlangen, den 14.02.2011(Unterschrift)								

Aufgabe 1: Instruktionssatzarchitektur (14 Punkte)

• Vier Klassen von Befehlssatz-Architekturen wurden in der Vorlesung vorgestellt. Zu welcher Klasse gehört eine CPU, die nachfolgenden Assembler-Code ausführen kann? Begründen Sie Ihre Antwort!

(2 Punkte)

```
load a, %r0
load b, %r1
add %r0, %r1, %r2
sub %r0, %r1, %r0
mul %r2, %r0, %r0
store %r0, c
```

• Schreiben Sie obigen Assembler-Code um, sodass er für eine CPU der Klasse "Akkumulator" geeignet ist! Sie dürfen die Speicherstellen tmp0, tmp1 usw. für Zwischenergebnisse nutzen.
(2 Punkte)

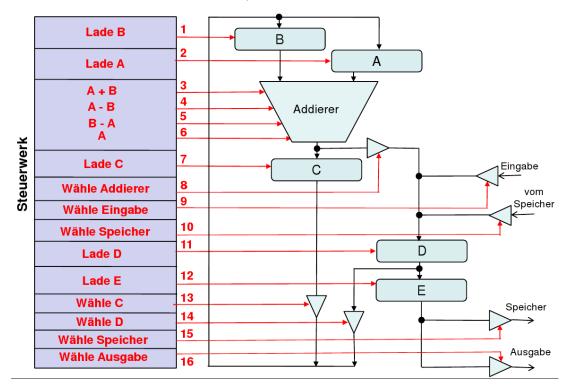
•	Moderne CPUs nutzen Pipelining mit vielen Pipeline-Stufen. Wie groß ist der Speed-Up einer Pipeline mit N Stufen? Begründen Sie die Formel für den Speed-Up! (3 Punkte)
•	Welche Bedingungen müssen erfüllt sein, damit beim Pipelining mit jedem Takt die Bearbeitung einer Instruktion abgeschlossen werden kann? (3 Punkte)
•	Bei der Abarbeitung von Sprüngen sind bei CPUs mit Pipelining Besonderheiten zu beachten. Erklären Sie diese! (4 Punkte)

Aufgabe 2: Stack (15 Punkte)

Gegeben sei folgendes Programm:

```
int fac(int x)
{
    if (x <= 1) return 1;
    else return fac(x - 1) * x;
}</pre>
```

Der verwendete Compiler optimiere *nicht*. int-Zahlen und Adressen seien je 32-Bit groß.


• Wie viel Speicher braucht dieses Programm mindestens, wenn es mit dem Wert x=100 aufgerufen wird? Begründen Sie Ihre Antwort! (3 Punkte)

• Wie sollte die Aktualisierungsstrategie für den Cache für die hier gelesenen und geschriebenen Werte gesetzt sein? Begründen Sie Ihre Antwort! (2 Punkte)

• Schreiben Sie Assembler-Code für obiges Hochsprachen-Programm! (10 Punkte)

Aufgabe 3: Mikroprogrammierung (12 Punkte)

Gegeben sei der aus der Vorlesung/Übung bekannte Teil einer CPU:

• Schreiben Sie ein Mikroprogramm, das nacheinander die Werte 0, 1, 2, ..., 7 auf der Ausgabe ausgibt! Die Register B, C, D und E enthalten bei Programmstart jeweils den Wert 0. Der Wert von A darf gewählt werden. (8 Punkte)

• Wie müsste die Hardware-Struktur verändert werden, um die 8 Zahlen mit weniger Takten ausgeben zu können? Begründen Sie Ihre Antwort! (4 Punkte)

Aufgabe 4: I/O (9 Punkte)

Gegeben sei folgendes Programm:

```
int array[10];
...
read_values_from_disk(array);
sum = calculate_sum(array);
...
```

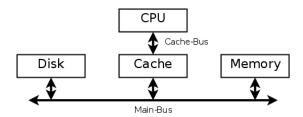
Zur Auswahl stehen 6 Rechner:

Rechner A: ohne DMA, ohne Cache

Rechner B: mit DMA, ohne Cache

Rechner C: ohne DMA, mit großem Cache (Write-Through)

Rechner D: mit DMA, mit großem Cache (Write-Through)

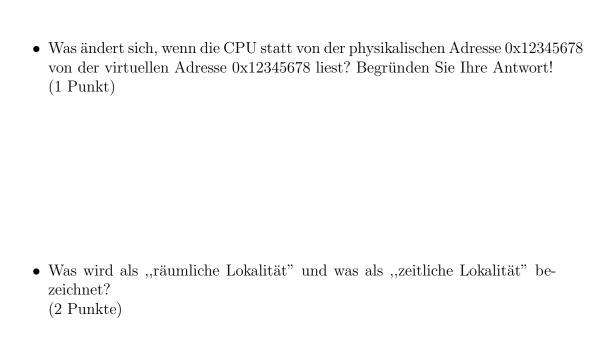

Rechner E: ohne DMA, mit großem Cache (Write-Back)

Rechner F: mit DMA, mit großem Cache (Write-Back)

Abgesehen von diesen Unterschieden sind die Rechner ansonsten gleich.

- Was bedeutet "Direct Memory Access"? (1 Punkt)
- Was bedeuten "Write-Through" und "Write-Back"? (2 Punkte)

• Über welche Busse und durch welche Komponenten werden die Daten bei den 6 Rechnern jeweils geschleust?
(3 Punkte)


• Welcher dieser 6 Rechner wird das Programm am schnellsten abgearbeitet haben (keine nebenläufigen Prozesse)? Begründen Sie Ihre Antwort! (3 Punkte)

Aufgabe 5: Speicher/Speicherhierarchie (15 Punkte)

• Warum wird der Speicher aus Hintergrundspeicher, Hauptspeicher und Caches hierarchisch aufgebaut?
(1 Punkte)

• Der Hauptspeicher wird häufig mit sogenanntem "Interleaving" betrieben. Was bedeutet dies? Warum macht man das so? (4 Punkte)

• Ein Rechner habe einen Bus von der CPU zum Hauptspeicher mit 32-Bit Breite sowie 4-fach-Interleaving. Auf welche Hauptspeicher-Bank greift die CPU zu, wenn sie ein Byte von der physikalischen Adresse 0x12345678 liest? Begründen Sie Ihre Antwort! (2 Punkte)

• Die Matrix-Multiplikation ist definiert als

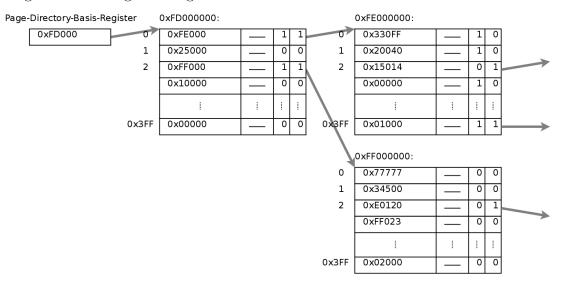
$$\begin{pmatrix} a_{1,1} & a_{2,1} & \cdots & a_{N,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{N,2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,M} & a_{2,M} & \cdots & a_{N,M} \end{pmatrix} * \begin{pmatrix} b_{1,1} & b_{2,1} & \cdots & b_{L,1} \\ b_{1,2} & b_{2,2} & \cdots & b_{L,2} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1,N} & b_{2,N} & \cdots & b_{L,N} \end{pmatrix} = \begin{pmatrix} c_{1,1} & c_{2,1} & \cdots & c_{L,1} \\ c_{1,2} & c_{2,2} & \cdots & c_{L,2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1,M} & c_{2,M} & \cdots & c_{L,M} \end{pmatrix}$$

 mit

$$c_{i,j} = \sum_{k=1}^{N} a_{k,j} b_{i,k}$$

Wenn L, M und N sehr große Zahlen sind, ergeben sich bei der Berechnung der $c_{i,j}$ Probleme beim Caching, wenn man versucht, die Summen nach obiger Formel direkt zu berechnen. Warum? (5 Punkte)

Aufgabe 6: Segmentierung/MMU (18 Punkte)


• Segmente sind definiert durch ihre Basis-Adresse und ihre Länge. Wie verwendet die CPU diese beiden Werte beim Zugriff auf ein Segment? (4 Punkt)

- Wo werden Segment-Basis-Adressen und -Längen i.A. gespeichert? (1 Punkt)
- Je größer der Adressraum einer CPU ist, desto mehr Stufen haben i.A. die Page-Tabellen. Warum? (2 Punkte)

Eine CPU biete eine Memory-Management-Unit mit folgenden Eigenschaften:

- zweistufige Adresstabellen
- je 1024 Einträge zu je 4 Byte in den Tabellen
 - Bit 31-12: höherwertige Bits der physikalischen Adresse
 - Bit 11-2: unbenutzt
 - Bit 1: Write-Protect-Bit
 - Bit 0: Present-Bit
- Pages zu je 4 KByte Größe

Gegeben seien folgende Page-Tables:

• Welche Einträge stehen in einem voll-assoziativen TLB mit vier Einträgen, nachdem die CPU nacheinander auf die virtuellen Adressen 0x003FF888, 0x003FF100, 0x00802100 und 0x00002400 lesend zugegriffen hat? (10 Punkte)

• Was passiert, wenn die CPU auf die virtuelle Adresse 0x003FF888 schreibend zugreift? Begründen Sie Ihre Antwort! (1 Punkt)

Aufgabe 7: Multi-Threading/Multi-Core (17 Punkte)

• Was ist der Unterschied von "Multi-Threading" und "Multi-Core"? (2 Punkte)

• Gegeben seien eine 4-Core-CPU, eine CPU mit 4-fach-Threading und eine CPU mit nur einem Core aber vierfacher Taktfrequenz. All diese CPUs können die gleiche maximale Anzahl von Instruktionen pro Zeiteinheit abarbeiten.

Beschreiben Sie die Vor- und Nachteile der CPUs! Geben Sie je einen Einsatzzweck an, für die die verschiedenen CPUs besonders geeignet sind! (9 Punkte)

•	Eine Multi-Core-CPU wird mit einer Speicherhierarchie verbunden, die aus
	Hintergrundspeicher, Hauptspeicher, 3rd-Level-, 2nd-Level- und 1st-Level-
	Caches besteht. Nur Teile der Speicherhierarchie werden von allen Cores
	gemeinsam genutzt.

_	Geben	Sie ein	n sinnvolles	s Beispiel	an,	welche	Speicher	gemeinsam	und
	welche	nicht	gemeinsam	genutzt	were	den! (2	Punkte)		

– Warum werden nicht alle Bereiche gemeinsam genutzt? Warum hat nicht jeder Core seine eigene Speicherhierarchie? (2 Punkte)

• Eine 4-Core-CPU kann eine MMU oder auch 4 MMUs besitzen. Geben sie Vor- und Nachteile an! (2 Punkte)

Zusätzlicher Platz

Zusätzlicher Platz

Zusätzlicher Platz