
Artificial Intelligence I

Summary

Lorenz Gorse

February 3, 2018

DISCLAIMER: THIS IS NOT A COMPLETE SUMMARY. ERRORS ARE LIKELY. THE SOLE SOURCE ARE THE
LECTURE SLIDES OF THE LECTURE ”KÜNSTLICHE INTELLIGENZ I” OF THE WINTER TERM 16/17 AT

THE FRIEDRICH-ALEXANDER UNIVERSITY.

1 Agents

Definition 1 (Agent). An agent is an entity that per-
ceives and acts. It is modeled as a function from percept
histories to actions.

P∗ 7→ A

An agent is anything that perceives its environment via
sensors and acts on it with actuators.

Definition 2 (Performance measure). A performance
measure is a function that evaluates a sequence of en-
vironments.

Definition 3 (Rationality). An agent is called rational, if
it chooses the actions that maximizes the expected value
of the performance measure given the percept history to
date.

Definition 4 (Autonomy). An agent is called au-
tonomous, if it does not rely on the prior knowledge of
the designer. Autonomy avoids fixed behaviors that can
become unsuccessful in a changing environment.

Definition 5 (Task environment). A combination of a
performance measure, environment, actuators and sen-
sors (PEAS) describes a task environment.

Definition 6 (Environment properties). For an agent a
we call an environment e

fully observable, iff a’s sensors give it access to the
complete state of e at any point in time, else par-
tially observable.

deterministic, iff the next state of e is completely de-
termined by a’s action and e’s current state, else
stochastic.

episodic, iff a’s experience is divided into atomic, inde-
pendent episodes, where it perceives and performs a
single action. Non-episodic environments are called
sequential.

dynamic, iff e can change without an action performed
by a, else static.

discrete, iff the sets of e’s states and a’s actions are
countable, else continuous.

single-agent, iff only a acts on e.

Definition 7 (Simple reflex agent). This is an agent that
bases its next action only on the most recent percept.

fa : P 7→ A

Definition 8 (Reflex agent with state). This is an agent
with a FSM as a agent function. Inputs to the FSM are
the percepts, outputs are a function of the current state
and determine the actions.

Definition 9 (Goal-based agent).

Definition 10 (Utility-based agent). This is an agent
that uses a world model along with a utility function that
measures its preference among the states of the world. It
chooses the action that leads to the best expected utility,
which is computed by averaging over all possible outcome
states, weighted by the probability of the outcome.

Definition 11 (Learning agent). This is an agent that
augments the performance element (which chooses actions
from percept sequences) with a

learning element that makes improvements to the
agent’s performance element

critic which gives feedback to the learning element based
on an external performance standard

problem generator which suggests actions that can
lead to new, informative experiences

Definition 12 (State representation). We call a state
representation

atomic if it has no internal structure

factored if each state is characterized by attributes and
their values

structured if the state includes objects and their rela-
tions

1



2 Search

Definition 13 (Search problem). A search problem

P = 〈S,O, I,G〉

consists of a set S of states and a set O ⊆ S×S of opera-
tors. Certain states in S are labeled as goal states G ⊆ S
and there is a single initial state I ∈ S. A cost function
c : O 7→ R+ assigns costs to operators.

Definition 14 (Solution). A sequence of operators that
lead from the initial state I to any goal state g ∈ G is a
solution.

Definition 15 (Problem types). Problems come in many
variations:

Single-state problem : state is always known with cer-
tainty (observable, deterministic, static, discrete)

Multiple-state problem : know which states might be
in (initial state not/partially observable)

Contingency problem : constructed plans with con-
ditional parts based on sensors (non-deterministic,
unknown state space)

Definition 16 (Tree search). This is an algorithm that
explores state spaces according to a search strategy.

Definition 17 (Search strategy). A search strategy or-
ders the nodes in the fringe. The following properties of
search strategies are studied:

Completeness: Does it always find a solution if one ex-
ists?

Time complexity: Number of nodes gener-
ated/expanded.

Space complexity: Maximum number of nodes held in
memory.

Optimality: Does it always find the least-cost solution?

Definition 18 (Uninformed search). Search strategies
that only employ information from the problem statement
yield uninformed searches. Examples are breadth-first-
search (BFS), uniform-cost-search (UCS), depth-first-
search (DFS), depth-limited search, iterative-deepening-
search (IDS).

Definition 19 (Informed search). Search strategies that
use information about the real world beyond the problem
statement yield informed searches. The additional infor-
mation about the world is provided in form of heuristics.
Examples are greedy-search and A*-search.

Definition 20 (Heuristic). A heuristic is an evaluation
function h : S 7→ R+∪{∞} that estimates the cost from a
state n to the nearest goal state. If n ∈ G, then h(n) = 0.

Definition 21 (Goal distance function). The function
h∗ : S 7→ R+ ∪ {∞} with h∗(n) being the cost of the
cheapest path from n to a goal state is the goal distance
function.

Definition 22 (Admissibility and consistency). A heuris-
tic h is admissible if h(n) ≤ h∗(n) for all states n ∈ S. A
heuristic h is consistent if h(s)−h(s′) ≤ c(o) for all s ∈ S
and o = (s, s′) ∈ O.

Definition 23 (Greedy-search). Greedy-search always
expands the node that seems closest to a goal state, as
measured by the heuristic.

Definition 24 (A∗-search). A∗-search always expands
the node that has the smallest sum of current path cost
and estimated distance to the nearest goal state.
The evaluation function for A∗-search is given by
f(n) = g(n) + h(n), where g(n) is the path cost for n and
h(n) is the estimated cost to goal from n.

Theorem 1. A∗-search is optimal if it uses an admissible
heuristic.

Definition 25 (Dominance). Let h1 and h2 be two
admisible heuristics we say that h2 dominates h1 if
h2(n) ≥ h1(n) for all n.

Definition 26 (Local search). A search algorithm that
only operates on a single space at a time is called a lo-
cal search. Local search algorithms need constant space.
One example is hill-climbing:

1. Start with any state n.

2. Move to the successor n of the current state for
which h(n) is minimal.

Definition 27 (Game state space). A 6-tuple Θ =
(S,A, T, I, ST , u) is a game state space.

• S are the states of the game. This is the dis-
joint union of SMax (When it’s Max’s move), SMin

(When it’s Min’s move) and ST (When the game is
over).

• A are the possible moves. This is the disjoint union
of

AMax ⊆ SMax × (SMin ∪ ST )

and
AMin ⊆ SMin × (SMax ∪ ST )

• ST is the set of terminal states.

• u : ST 7→ R is the utility function. Each terminal
state is assigned a value, which is interpreted as the
score for Max (and the negative score for Min).

Definition 28 (Strategy). Let Θ be a game state space,
and let X ∈ {max,min}. A strategy for X is a func-
tion σX : SX → AX so that a is applicable to s whenever
σX(s) = a. A strategy is optimal if it yields the best pos-
sible utility for X assuming perfect opponent play.

Definition 29 (Minimax Algorithm). The minimax al-
gorithm is given by the following function whose input is
a state s ∈ Smax, in which Max is to move:

function Minimax-Decision(s) returns an action

1: v :=Max-Value(s)
2: return an action yielding value v in the previous

function call

2



function Max-Value(s) returns a utility value

1: if Terminal-Test(s) then return u(s)

2: v := −∞
3: for each a ∈ Actions(s) do
4: v := max(v,Min-Value(ChildState(s, a)))

5: return v

function Min-Value(s) returns a utility value

1: if Terminal-Test(s) then return u(s)

2: v := +∞
3: for each a ∈ Actions(s) do
4: v := min(v,Max-Value(ChildState(s, a)))

5: return v

Definition 30 (Alpha-Beta-Search). The alphabeta
search algorithm is given by the following pseudo-code:

function Alpha-Beta-Search(s) returns an action

1: v :=Max-Value(s,−∞,+∞)
2: return an action yielding value v in the previous

function call

function Max-Value(s, α, β) returns a utility value

1: if Terminal-Test(s) then return u(s)

2: v := −∞
3: for each a ∈ Actions(s) do
4: v := max(v,Min-Value(ChildState(s, a), α, β))
5: α := max(α, v)
6: if v ≥ β then return v

7: /* Here: v ≥ β ⇔ α ≥ β */

8: return v

function Min-Value(s, α, β) returns a utility value

1: if Terminal-Test(s) then return u(s)

2: v := +∞
3: for each a ∈ Actions(s) do
4: v := min(v,Max-Value(ChildState(s, a), α, β))
5: β := min(β, v)
6: if v ≤ α then return v

7: /* Here: v ≤ β ⇔ α ≥ β */

8: return v

Definition 31 (Monte-Carlo sampling). For Monte-
Carlo sampling we evaluate actions through sampling.
When deciding which action to take on game state s:

function Monte-Carlo sampling

1: while time not up do
2: select action a applicable to s
3: run random sample from a until terminal state t

4: return an a for s with maximal average u(t)

Definition 32 (Monte-Carlo Tree Search). For Monte-
Carlo tree search we maintain a search tree T:

function Monte-Carlo Tree Search
1: while time not up do
2: apply actions within T to select a leaf state s′

3: select action a′ applicable to s′

4: run random sample from a′

5: add s′ to T , update averages etc.

6: return an a for s with maximal average u(t)
7: When executing a, keep the part of T below a.

3 Constraint Satisfaction Prob-
lems

Definition 33 (Constraint Satisfaction Problem). Ab-
breviated as CSP. This is a search problem where the
states are induced by a finite set V = {X1, . . . , Xn} of
variables and domains {Dv|v ∈ V } and the goal test is
a set of constraints specifying allowable combinations of
values for subsets of variables.

A partial assignment is a partial function a : V 7→⋃
v∈V Dv if a(v) ∈ Dv for all v ∈ V . We call a an assign-

ment if a is total.
A partial assignment a is inconsistent, iff there are

variables u, v ∈ V and a constraint Cuv ∈ C and
(a(u), a(v)) 6∈ Cuv. a is called consistent iff it is not in-
consistent.

A consistent assignment is called as solution.
The states of the problem are the partial assignments,

the initial state is the empty assignment, the goal states
are the consistent assignments and the operators are par-
tial assignment extensions.

The CSP is called binary if all constraint relate at
most two variables.

Definition 34 (Constraint network). A triple 〈V,D,C〉
is called a constraint network, where

• V = {X1, . . . , Xn} is a finite set of variables

• D = {Dv|v ∈ V } the set of their domains

• C = {Cuv|u, v ∈ V } a set of binary constraints.
Each binary constraint is a symmetric relation
Cuv ⊆ Du ×Dv.

Remark 1. Binary CSPs can be formulated as constraint
networks.

Definition 35 (Minimum remaining values). This is a
heuristic for backtracking searches on CSPs. It says: As-
sign the variable with the fewest remaining legal values
next.

Definition 36 (Degree heuristic). This is a heuristic for
backtracking searches on CSPs. It says: Assign the vari-
able with the most constraints on remaining variables
next.

Definition 37 (Least constraining value). This is a
heuristic for backtracking searches on CSPs. It says:
When assigning a variable, choose the value that rules
out the fewest values from the neighboring domains.

3



Remark 2. A popular heuristic combines the three
heuristics above: From the set of most constrained vari-
ables, pick the most constraining variable and assign the
least constraining value.

Definition 38 (Equivalent constraint networks). Two
constraint networks γ = 〈V,D,C〉 and γ′ = 〈V,D′, C ′〉
are equivalent (γ ≡ γ′) iff they have the same solutions.

Definition 39 (Tightness). Let γ = 〈V,D,C〉 and γ′ =
〈V,D′, C ′〉 be two constraint networks. γ′ is said to be
tighter than γ (γ′ v γ) iff

• For all v ∈ V : D′v ⊆ Dv

• For all u, v ∈ V : Cuv /∈ C or C ′uv ⊆ Cuv

Remark 3. An equivalent but tighter constraint network
is preferable, because it has fewer consistent partial as-
signments.

Definition 40 (Backtracking with Inference). The gen-
eral algorithm for backtracking with inference:

function BacktrackingWithInference(γ, a) returns a
solution, or ”inconsistent”

1: if a is inconsistent then return ”inconsistent”
2: if a is a tgtal assignment then return a

3: γ′ := a copy of γ /* γ′ = (V,D′, C ′) */
4: γ′ := Inference(γ′)
5: if exists v with D′v = ∅ then return ”inconsistent”

6: select some variable v for which a is not defined
7: for each d ∈ copy of D′v in some order do
8: a′ := a ∪ (v = d); D′v = {d}
9: /* makes a explicit as a constraint */

10: a′′ := BacktrackingWithInference(γ′, a′)
11: if a′′ 6= ”inconsistent” then return a′′

12: return ”inconsistent”

Remark 4. Inference(γ): Any procedure delivering a
(tighter) equivalent network.

Definition 41 (Forward checking). For a constraint net-
work γ and a partial assignment a, remove all values from
the domains of unassigned variables that are in conflict
with the values of already assigned variables to obtain a
tighter network γ′.

function ForwardChecking(γ, a) returns modified γ

1: for each v where a(v) = d′ is defined do
2: for each u where a(u) is undefined and Cuv ∈ C

do
3: Du := {d ∈ Du | (d, d′) ∈ Cuv}
4: return γ

Definition 42 (Arc consistency). For a constraint net-
work γ and a partial assignment a, a pair (u, v) ∈ V 2 of
variables is arc consistent if for every value in the domain
of u, there exists a valid partner in the domain for v. For
a variable w ∈ dom(a), assume Dw = {a(w)}.

Remark 5. Enforcing arc consistency (removing variable
domain values until γ is arc consistent):

function Revise(γ,u,v) returns modified γ

1: for each d ∈ Du do
2: if there is no d′ ∈ Dv with (d, d′) ∈ Cuv then
3: Du := Du \ {d}
4: return γ

Remark 6. Runtime, if k is maximal domain size: O(k2),
based on implementation where the test ”(d, d′) ∈ Cuv?”
is constant time.

AC-1 Iterate repeatedly over every constraint and en-
force arc consistency in both directions. Stop when
no changes have been made in one iteration.

function AC-1(γ) returns modified γ

1: repeat
2: changesMade := False
3: for each constraint Cuv do
4: Revise(γ, u, v)
5: if Du reduces then changesMade := True

6: Revise(γ, v, u)
7: if Dv reduces then changesMade := True

8: until changesMade := False
9: return γ

Remark 7. Runtime, if n variables, m constraints, k
maximal domain size: O(mk2nk): mk2 for each inner
loop, fixed point reached at the latest once all nk vari-
able values have been removed.

AC-3 For every constraint Cuv, put (u, v) and (v, u) in
M . Do the following until M = ∅: Remove one
element (u, v) from M and enforce arc consistency
from u to v. If Du changed, add (w, u) to M for
every constraint Cuw and w 6= v.

function AC-3(γ) returns modified γ

1: M := ∅
2: for each constraint Cuv ∈ C do
3: M := M ∪ {(u, v), (v, u)}
4: while M 6= ∅ do
5: remove any element (u, v) from M
6: Revise(γ, u, v)
7: if Du has changed in the call to revise then
8: for each constraint Cwu ∈ C where w 6= v do
9: M := M ∪ {(w, u)}

10: return γ

Remark 8. Let γ = 〈V,D,C〉 be a constraint network
with m constraints, and maximal domain size k. Then
AC-3(γ) runs in time O(mk3).

Remark 9. To solve an acyclic constraint network, en-
force arc consistency with AC-3 and run backtracking
with inference on the arc consistent network. This will
find a solution without having to backtrack.

Definition 43 (Acyclic Constraint Graph). Let γ =
〈V,D,C〉 be a constraint network with n variables and
maximal domain size k, whose constraint graph is acyclic.
Then we can find a solution for γ, or prove γ to be incon-
sistent, in time O(nk2).

4



function AcyclicCG(γ)

1: Obtain a directed tree from γ’s constraint graph, pick-
ing an arbitrary variable v as the root, and directing
arcs outwards.

2: Order the variables topologically, i.e., such that each
vertex is ordered before its children; denote that order
by v1, . . . vn.

3: for i := n, n− 1, . . . , 2 do
4: Revise(γ, vparent(i), vi)
5: if Dvparent(i)

= ∅ then return ”inconsistent”

6: /* Now, every variable is arc consistent relative to its
children */

7: Run BacktrackingWithInference with forward check-
ing, using the variable order v1, . . . vn.

Definition 44 (Cutset conditioning). Let γ = 〈V,D,C〉
be a constraint network, and V0 ⊆ V . V0 is a cutset for γ
if the sub-graph of γ’s constraint graph induced by V \V0
is acyclic. V0 is optimal if its size is minimal among all
cutsets for γ.

function CutsetConditioning(γ, V0, a) returns a solu-
tion, or ”inconsistent”

1: γ := a copy of γ
2: γ′ := ForwardChecking(γ′, a)
3: if ex. v ∈ V0 s.t. a(v) is undefined then
4: select such v
5: else
6: a′ := AcyclicCG(γ′)
7: if a′ 6= ”inconsistent” then return a ∪ a′
8: else return ”inconsistent”
9: for each d ∈ copy of D′v in some order do

10: a′ := a ∪ {v = d}; D′v := {d};
11: a′′ := CutsetConditioning(γ′, V0, a

′)
12: if a′ 6= ”inconsistent” then return a′′

13: return ”inconsistent”

4 Logic

Definition 45 (Syntax). Rules to decide what are legal
formulas.

Definition 46 (Semantics). Rules to decide whether a
formula A is true for a given assignment or interpretation
φ. Write φ |= A is A is true under φ or φ 6|= A if not.

Definition 47 (Entailment). B is entailed by A iff for
every interpretation that makes A true, B is true as well
(For every model φ, φ |= A =⇒ φ |= B). Write A |= B.

Definition 48 (Deduction). Which statements can be
derived from A using a set of inference rules C? A `C B
means B can be derived from A in the calculus C.

Definition 49 (Soundness). A calculus C is sound if for
all formulas A,B it is true that A `C B =⇒ A |= B.

Definition 50 (Complete). A calculus C is complete if
for all formulas A,B it is true that A |= B =⇒ A `C B.

Definition 51 (Propositional logic). Also called PL0.
Let wffo(Vo) be the set of well-formed formulas with vari-
ables Vo.

Definition 52 (First order logic). Also called FOL.
wffι(Σι) is the set of well-formed terms over a signature
Σι (function and skolem constants). wffo(Σ) is the set
of well-formed propositions over a signature Σ (Σι plus
connectives and predicate constants).

Theorem 2 (Unsatisfiability). Let H be a set of formu-
las and A be a single formula. H |= A iff H ∪ {¬A} is
unsatisfiable.

Definition 53 (Conjunctive normal form). A formula A
is in conjunctive normal form (CNF) if it is a conjunction
of disjunctions of literals: A = ∧ni=1 ∨

mi
j=1 lij where lij is

a literal, which is a possibly negated variable.

Definition 54 (Natural deduction). Also ND1. Con-
tains the following inference rules:

A B ∧I
A ∧B

A ∧B ∧ElA

A ∧B ∧ErB

TND
A ∨ ¬A

A
B

=⇒ I
A =⇒ B

A =⇒ B A
=⇒ E

B

A ∀I∀X.A

∀X.A ∀E
[B/X](A)

[B/X](A)
∃I∃X.A

∃X.A
[c/X](A)

B ∃E
B

= I
A = A

A = B C[A]p
= E

[B/p](C)

Definition 55 (Analytical tableaux). Contains the fol-
lowing inference rules:

A ∧BT T0∧
AT , BT

A ∧BF T0∨
AF |BF

¬AT
T0
T¬

AF

¬AF
T0
F¬

AT

¬AT ¬AF T0cut⊥

∀X.AT C ∈ cwffι(Σι) T1∀
[C/X](A)T

∀X.AF c ∈ (Σsk0 \ H)
T1∃

[c/X](A)F

A =⇒ BT

AF |BT

A =⇒ BF

AT , BF

AT A =⇒ BT

BT

A ∨BT
AT |BT

A ∨BF
AF , BF

A⇔ BT

AT , BT |AF , BF

A⇔ BF

AT , BF |AF , BT

All rules do the same thing: If the premise is P , open
one branch for every way to make P true. For example:

5



There are two ways to make the premise A =⇒ BT true.
Either AF or BT . This means two branches are opened,
one for AF and one for BT . (N.b. there are actually three
ways to make the premise true: AT , BT |AF , BT |AF , BF .
It is still enough to open just two branches, because BT

captures the former two ways and AF captures the latter
two.)

Of the first five rules, all operate in the same branch,
except T0∨. This rule creates two new branches, one for
AF and one for BF .

A tableaux is saturated if all rules that can be applied
do not contribute new material.

A branch is closed if it contains ⊥, else open. A
tableau is closed if all of it’s branches are closed (n.b.
a closed tableau may or may not be saturated).

Theorem 3. A is valid iff there is a closed tableau with
AF at the root.

Definition 56 (Resolution). The resolution calculus has
three rules of inference:

PT ∨A PF ∨B
A ∨B

PT ∨A QF ∨B σ = mgu(P,Q)

σ(A) ∨ σ(B)

Pα ∨Qα ∨A σ = mgu(P,Q)

σ(P ) ∨ σ(A)

The last two rules are only necessary when working in
FOL. The second rule assumes A,B share no variables.
In the last rule, α is either > or ⊥.

Remark 10 (Resolution). A derivation of the empty
clause � from a clause set S is a resolution refutation.
This means S is unsatisfiable.

A resolution refutation of CNF (H ∧ ¬A) is a reso-
lution proof for H |= A. Refer to the unsatisfiability
theorem.

Definition 57 (Conversion into CNF). An arbitrary for-
mula can be transformed into a CNF by doing the follow-
ing steps:

1. Rewrite all implications and equivalences using
negations, disjunctions and conjunction.

2. Move negations inwards. After this step, negations
may only occur immediately before predicates.

3. Rename variables bound by quantifiers to make
them unique. After this step, a variable is either
free or bound by exactly one quantifier.

4. Move quantifiers outwards. After this step, a quan-
tifier may only occur in the prefix of the formula
but not inside of a ∧,∨ or ¬.

5. Replace variables bound by existential quan-
tifiers with skolem functions. Exam-
ple: ∀x1 . . . ∀xn∃xn+1.P is replaced by
∀x1 . . . ∀xn.[f(x1, . . . , xn)/xn+1](P ).

6. Drop universal quantifiers.

7. Distribute ∨’s inwards over ∧’s: A∨(B∧C) becomes
(A ∨B) ∧ (A ∨ C).

Remark 11. CNF (P ) is satisfiable iff P is satisfiable.

Definition 58 (DPLL). The DPLL procedure is an al-
gorithm to find an interpretation satisfying a clause set
∆.

Definition 59 (Abstract consistency). A family∇ of sets
of propositions is an abstract consistency class, iff for ev-
ery φ ∈ ∇ it is true that

• P 6∈ φ or ¬P 6∈ φ for every variable P

• φ ∗A ∈ ∇ if ¬¬A ∈ φ

• φ ∗A ∈ ∇ or φ ∗B ∈ ∇ if (A ∨B) ∈ φ

• φ ∗ ¬A ∗ ¬B ∈ ∇ if ¬(A ∨B) ∈ φ

• φ ∗ [B/X](A) ∈ ∇ for every closed term B if
(∀X.A) ∈ φ

• φ∗[c/X](A) ∈ ∇ for a fresh constant c if (¬∀X.A) ∈
φ

Theorem 4 (Model existence). If ∇ is an abstract con-
sistency class and φ ∈ ∇ then φ is satisfiable.

Theorem 5. ∇ = {φ | φ has no closed tableau} is an
abstract consistency class.

Theorem 6. The calculus of analytical tableaux is com-
plete.

Proof. Show that whenever A is valid, ¬A must have
a closed tableau: Assume A is valid. Assume ¬A has
no closed tableau. ¬A ∈ ∇. As per model existence,
¬A is satisfiable because it is in ∇. This contradicts
the assumption that A is valid. ¬A must have a closed
tableau.

5 Logic Programming

Definition 60 (Fact). This is a term that is uncondi-
tionally true.

Definition 61 (Rule). This is a term that is true if cer-
tain premises are true.

Definition 62 (Clause). Facts and rules are both clauses.

Definition 63 (Knowledge base). The knowledge base
given by a Prolog program is the set of terms that can be
derived from it using the following rules:

A A =⇒ B
MP

B
A B ∧I
A ∧B

A
Subst

[B/X](A)

Definition 64 (Horn clause). A horn clause is a clause
with at most one positive literal.

Remark 12. The Prolog rule H : −B1, . . . , Bn is the
implication B1 ∧ · · · ∧ Bn =⇒ H can be written as
¬B1 ∨ · · · ∨ ¬Bn ∨H. This is a horn clause.

6



6 Planning

Definition 65 (Planning language). A planning lan-
guage describes, using logic, the

• set of possible states

• initial state I

• goal condition G

• set of actions A in terms of preconditions and ef-
fects.

Remark 13. By describing the components of a plan-
ning problem using logic, the solver is able to gain insight
into the problem structure. This means the solver is no
longer working on a black-box.

Definition 66 (Satisficing planning). A procedure that
takes as input a planning problem Π and outputs a plan
for Π or unsolvable, if no such plan exists.

Definition 67 (Optimal planning). A procedure that
takes as input a planning problem Π and outputs an op-
timal plan for Π or unsolvable, if no such plan exists.

Definition 68 (STRIPS planning task). This is a encod-
ing of a planning problem using a 4-tuple Π = 〈P,A, I,G〉
where

• P is a finite set of facts

• A is a finite set of actions, each given as a triple
〈prea, adda, dela〉. The components of the triple are
called preconditions, add-list and delete-list

• I ⊆ P is the initial state

• G ⊆ P is the goal.

Definition 69 (Only-adds relaxation). This is a relax-
ation of a given STRIPS planning task Π where P, I,G
are the same and the actions are the actions of Π with
empty preconditions and empty delete lists.

Definition 70 (Delete relaxation). This is a relaxation
Π+ of a given STRIPS planning task Π where P, I,G are
the same and the actions are the actions of Π with empty
delete lists.

Definition 71 (Relaxed plan). Let Π = 〈P,A, I,G〉 be
a planning task. A relaxed plan for s ∈ P(P ) is a plan
for 〈P,A, s,G〉+. A relaxed plan for I is called a relaxed
plan for Π.

Remark 14 (Planning algorithms). Plans for planning
tasks can be found using informed search strategies.

Definition 72 (h+-heuristic). For a planning task Π =
〈P,A, I,G〉, h+ : P 7→ N ∪ {∞} is a heuristic calculating
the length of the optimal relaxed plan for s or ∞ if no
plan exists.

Theorem 7. h+ is admissible.

Theorem 8. Calculating h+ is NP-complete.

Definition 73 (hFF -heuristic). For a planning task Π =
〈P,A, I,G〉, hFF : P 7→ N∪{∞} is a heuristic calculating
the length of a relaxed plan for s or ∞ if no plan exists.

Remark 15. hFF never underestimates h+ and may even
overestimate h∗. Thus, hFF is not admissible and may
not be used for optimal planning (but for satisficing plan-
ning).

7


