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2.1. Matricies

Nullspace

The nullspace of a matrix is:
A~x = ~0 (2.1)

which means all vectors ~x which fullfill the equation are the nullspace of A.
All Matrices have the trivial nullspace: ~0.
If a Matrix have a non-trivial nullspace, than this is a clear idicator that this matrix
cannot be inverted because the matrix have a rank deficiency.

Rank

The rank of a Matrix is the dimension of the collumn-space. The rank tells you the
number of linearly independent Collumn-Vectors.

A =

a11 a12

a21 a22

 = ( ~a1, ~a2) (2.2)

pseudo-inverse

If a Matrix cannot be inverted you can compute the pseudo-inverse, which is as close
as possible to the potential inverse.

2.2. SVD

The SVD can compute the pseudo-inverse of a Matrix. You can ignore the rank and
all the important stuff you have to know wether a matrix can be inverted or not.

2
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• If the Matrix can be inverted then the SVD will give you the inverse of the
Matrix !

• If the Matrix cannot be inverted then the SVD will give you the pseudo-inverse
of the Matrix !

SVD is a perfect tool for the:

• computation of singular values

• computation of null space

• computation of (pseudo-)inverse

• solution of overdetermined linear equations

• computation of condition numbers

• enforcing rank criterion (numerical rank)

2.3. Fourier Transform

2.3.1. Symmetry Property of Fourier Transform

There exists a nice property for a real valued discrete signal of length N :

F (ξ) = F̄ (N − ξ) (2.3)

If F (ξ) is real-valued Function the Fourier transformed goes from [0;N−1] elements.
The Fourier transform at the point ξ is the conjugate at the Point F̄ (N − ξ).

2.3.2. Dirac’s δ-function

The δ-function is defined as:

δ(n) =


1, if n=0

0, otherwise

You can use Dirac’s δ-function to select single values in the frequency domain:

F (k) = F̂ (s) · δ(k − s)

3
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Only when s = k Dirac’s δ-function will be not Zero and you get the value at position
k.

2.4. Statistics

2.4.1. Entropy and Kulback-Leibler Divergence

Entropy

The Entropy measures how close your pdf of the intensity values are to the uniform
distribution. The higher the Entropy the closer your pdf of your intensity values look
like the pdf of the uniform distribution. The Entropy of a discrete random variable
X is defined by:

H(X) = −
n∑
i=1

p(xi) log p(xi)

If you measures the KL-Divergence from an pdf to the uniform distribution then
you get the Entropy formula above.

KL - Kulback Leibler Divergence

With the Kulback Leiber Divergence you can measure the similarity of two pdfs.
You could use: ∫ (

(p(x)− q(x))2
)
dx

but with this equation you have the problem that you run into problems if your
random variables have different quantisations.
So instead you should use the KL-Divergence:

KL(p, q) =
n∑
i=1

p(xi) log p(xi)
q(xi)

(2.4)

Properties of the KL-Divergence:

• KL(p, q) 6= KL(q, p)

• KL(p, q) ≥ 0

• KL(p, q) = 0⇔ p = q

• KL(p, q)→ 0 if p→ q

4
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2.4.2. Independency

When are two random Variables X,Y statistically independent?

• p(x) pdf of X

• q(y) pdf of Y

• p(x, y) joint pdf

• p(x) · q(y) = p(x, y)

They are independent when you can factorize the joint pdf.

2.4.3. Regularizer

A closer look to the regularize in the probabilistic context:
where c is the estimated and x the observation:

p(c|x) = p(x, c)
p(x) = p(c) · p(x|c)

p(x)

for the maximization w.r.t. c p(x) can be ignored, because it does not affect the
position of the maximum only the value:

arg max
c

p(c|x) = arg max
c

p(c)p(x|c) = arg max
c

log p(c)︸ ︷︷ ︸
regularizer

+ log p(x|c)︸ ︷︷ ︸
data term

where the data Term p(x|c) contains the information, the observation and p(c) only
depends on the class that we considering, which is prior or the regularize.
The regularize only holds information on the classes we want to estimate. So a
regularize is just use the objective function (data Term) and adds another term to
the objective functions which depends not on the observation only on the parameters
! (is also called prior knowledge because you don’t look at the measurements) take of
using prior knowledge in medicine, because patients are usually persons
which are not belong to the average

2.4.4. Marginalization - Hidden Random Variables

If you have a PDF p(X,Y, Z) then the following counts:∫ ∫ ∫
p(X,Y, Z)dXdY dZ = 1 (2.5)

5
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to get the probability of observing X without knowing some thing about Y and Z.
You can integrate over Y and Z to get p(X):∫ ∫

p(X,Y, Z)dY dZ = p(X) (2.6)

in other words, you can eliminate random Variables by marginalization.

2.5. Homogeneous Coordinates

A two-dimensional point in Cartesian coordinates p = (x, y)T ∈ R2 is represented
by (wx,wy,w)T ∈ P2 in homogeneous coordinates, where w ∈ R is an arbitrary real
valued constant.
A Vector in homogeneous coordinates can be transformed back to Cartesian coordi-
nates by dividing the components with the last component (6= 0).
A 2-D point (x, y)T in Cartesian coordinates corresponds to a line in 3-D:

x
y

→ w ·


x

y

1

 where w ∈ R (2.7)

There exists an infinite number of homogeneous points that correspond to one and
the same 2-D point!

2.5.1. Rotation and Translation

normally you have to multiply the rotation matrix from the left side and add a 3D
translation vector t: 

x′

y′

z′

 = R


x

y

z

+ t (2.8)

6
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if you use homogeneous coordinates you can incorporate the translation:

x′

y′

z′

1


=



R11 R12 R13 tx

R21 R22 R23 ty

R31 R32 R33 tz

0 0 0 1





x

y

z

1


(2.9)

7



DMIP Summary

3. PreProcessing

3. PreProcessing

3.1. Disortion & Interpolation

3.2. Detectors

The Image quality is defined by three major components.

• Noise

• spatial Resolution

• contrast resolution

3.2.1. DQE - Measurement

The detective quantum efficiency (DQE) is a important measurement of a Detector.
DQE = SNR2(f)out

SNR2(f)in

3.3. Defect Pixel Interpolation

In Interpolation you hit the sampling points exactly, not like regression where you fit
a line with the smallest error. Or like extrapolation, where you try to find a sampling
point outside your interval of sampling Points.

3.3.1. Defect Pixel

The mathematical model for defect generation is just the multiplication of the ori-
ginal image with a defect mask. Let fi,j denote the intensity value at

wi,j =


1, if pixel is defect

0, otherwise

8
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Defect Pixel Interpolation by band limitation

the
discontinuity leads to a Signal which have high frequencies and is not band-limited
any more ! So the Fourier transform run into the problem that the Fourier transform
will not achieve zero values for a certain threshold ξ.
So take the Fourier transform of the signal with the defect and cut off all the fre-
quencies that are larger than the Band-limitation b of the Detector (this is given),
back transform the signal and fill in the new values at the defect column.
This Values are not zero but you still have a huge difference. Repeat this proceeder
iteratively, at the end you will get a signal which do not violate the band-limitation
of the Signal.
Which is nothing else than a low pass filter but it is very important that you do not
filter the whole image; only at the defect positions.

• Band limitation must be known

• its computationally expensive, because each iteration requires twice the Fourier
transform.

• If the defect is at the border of the observed interval, its a case of extrapolation
the results aren’t that good.

9
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Frequency Domain Defect Pixel Interpolation

We can interpret our defect Image g as a product of the ideal Image f and a de-
fect mask w. This cant be inverted because the mask contains zero entries (defect
Pixels).

f(n) · w(n) = g(n)

F (ξ) ∗W (ξ) = G(ξ)

But we can look in the frequency Domain, where we can compute a deconvolution!
All three, the ideal, the mask and the defect Image the Fourier transform satisfies
the symmetry property (all three are real valued):

F (ξ) = F̄ (N − ξ)

W (ξ) = W̄ (N − ξ)

G(ξ) = Ḡ(N − ξ)

Instead of looking at the whole Fourier transform we only look on the symmetric
pairs G(s) and G(N −s) from the corrupted Image and F (s) and F (N −s) from the
ideal Image. With these Pairs we can rewrite the Fourier transform using Dirac’s
δ-function:

F (k) = F̂ (s)δ(k − s) + F̂ (N − s)δ(k −N + s)

10
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So the Fourier transformation just consists of the too values at s and N − s selected
with the δ-function.
You can put that into the convolution; this gets reduced to two elements:

G(s) = 1
N︸︷︷︸

scaling

(
F̂ (s)W (0) + ˆ̄F (s)W (2s)

)

The conjugate complex of this is:

¯G(s) = 1
N

( ˆ̄F (s)W̄ (0) + F̂ (s)W̄ (2s)
)

The ˆ̄F (s) can be replaced by the original function F (N − s).
Then we have two linear equations(G(s) and Ḡ(s)) with two unknowns F (s) and
F (N − s) so we can solve it.

F̂ (s) = N
G(s)W̄ (0)− Ḡ(s)W (2s)
|W (0)|2 − |W (2s)|2

where |.| is the absolute value of the complex number.
This is not for the whole Fourier transform, its only for one pair. We can solve
this equations for different Pairs and get estimates for the whole Fourier transform;
transform F back and compare it to our measured Image.
So we can iterate over these different pairs and minimize the error between the mea-
sured Image and the back transformed Image f multiplied with our mask Image:

∆ε = 1
N

N−1∑
n=0

(g(s)− w(n) · f(n))2 (3.1)

11
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3.4. MRT

The magnetic Field in space should be different in each spatial point. The MR-
Scanner needs a gradient System which generates this special magnetic field and a
RF-System. The RF-System contains a transmission and a receiver coil. The trans-
mitter coil generates a rotating magnetic field for the excitation of a spin system(the
nucleus have beside mass and charge their spin as a basic property), and the receiver
coil converts magnetic charges in electrical system. So the transmitter causes chan-
ges in the System and the receiver coil measures this changes and convert this into
intensity values.

Pros:

• patient care, no ionising Rays

• high spatial resolution(50µm)

• excellent contrast resolution (discrimination of soft tissues)

• ...

Cons:

• inhomogeneities caused by radio frequency coil.

• intensity inhomogeneities produce spatial changes in tissue statistics. That
means in an MR image the intensity value of water can be 5 but also 5000.
Different intensities at different points in the Image may characterize the same
molecular structure.

• inhomogeneities can change with different acquisition parameters, from patient
to patient and from slice to slice

3.4.1. Intensity Inhomogeneities (IIH) in MRI

Their are different Reasons for inhomogeneities in MRI:

• non-uniform radio-frequency

• inhomogeneity of the static main field

• patient motion

There exists different mathematical models to describe the IIH:

• Low-Frequency model: It is assumed that IIH is caused by low-frequency
components; the IIH map can be recovered by low-pass filtering

12
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Abbildung 3.1.: Original MR Image(left),gain field (middle), restored image (right)

• Hypersurface model:IIH map is represented by a smooth (low-frequency)
parametric function; the IIH map can be recovered by least-square-fitting (re-
gression)

• Statistical model:IIH map is represented by a stochastic process; the IIH
map can be recovered dependent on the selected statistical model by parame-
tric or non-parametric statistical estimation

This multiplicative model is now a days the accepted model, earlier used additive
models are not close enough the reality:

gij = fij · bij + nij (3.2)

where gij is the observed Image, fij the ideal Image and bij is the gain field and
nij is the noise mostly set as a Gaussian noise. Correction methods mostly will
applied to the product of f and b, the noise should be removed before. You can
use a homomorphism and apply the logarithm to the equation above to replace the
product with a summation.
Hint: if you use the logarithm you have to be aware of that the resulting noise is
no Gaussian noise any more !

High pass filtering

The main Idea is to apply a high pass filter on the Image, because the bias field is
generated by low frequencies. For a faster filtering transform the measured Image
into the frequency domain using the Fourier transform and then multiply it with a
high-pass filter Kernel H:

Hk,l = 1− β · e−
k2+l2
2σ2 (3.3)

13
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where β is a scaling factor that ensure that Hk,l for all k, l = 0, .., N − 1 and σ2 is
closely related to the bandwidth of the filter-kernel.
So you get your corrected Image f with:

f = FT−1
{
Gk,l ·Hk,l

}
(3.4)

Homomorphic Filtering

This type of filtering assume IIH is:

• an artefact with low frequencies

• the anatomic structure contribute to the high frequencies in the image

The same assumptions like in the filtering before, but this time we go another way.
The main idea is to do a low-pass filtering to get the bias field and subtract this
from the measured Image.
Homomorphic filtering is applied to log-transformed images:

• low-pass filterung of the log-transformed image (LFP denotes a low pass filter):

[hi,j ] = LPF([log gi,j ]) (3.5)

• IIH corrected log-transformed image results from the difference:

[log fi,j ] = [log gi,j ]− [hi,j ] + µ (3.6)

where µ assures that IIH correction is mean preserving. So you add here a
mean-value, to make sure that you have a mean normalisation, you make sure
that the final mean intensity value is in a certain range.

Homomorphic Unsharp Masking

Is apply a mean normalization. The idea is, that when you have a Image of the brain,
for example, then you should have in patches of the Image the same mean-value,
but as shown in Figure 3.1 that not true:

fi,j = gi,j ·
µ

µi,j
(3.7)

where µ is the global mean of the Image and µi,j is the mean of the neighbourhood
at pixel i, j.
Hint: take in consideration that this method implies that the local mean is the same

14
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as the gloab mean, which is only true for some cases. A full body scan for example
would violate this assumption!

Polynomial filtering

KL Divergence Minimization

It allows the incorporation of prior knowledge

Fuzzy C-means Clustering

The main idea is to use a probabilistic k-means algorithm. So you calculate the
distance to the Clusters but incorporate the probability that the feature belongs to
a Cluster.
The fuzzy C-means objective function for partitioning the observation into Nc clus-
ters and allows one data point belong to more than one class:

J(x1, x2, ...., xn) =
Nc∑
i=1

n∑
k=1

adi,k||xk − ci||2 (3.8)

• Prior: number of tissue classes

• c1, c2, ..., cNc are the prototypes of the clusters

• x1, x2, ..., xn are the data points, in ours case the logarithms of ideal intensities

The objective function has to be minimized with respect to ci, ai,k. The optimization
needs the constraint that the probability that a feature belongs to a cluster sum up
to one:

minimize
Nc∑
i=1

n∑
k=1

adi,k||xk − ci||2 (3.9)

subject to
Nc∑
i=1

ai,k = 1 (3.10)

This can be solved with the Lagrange multiplier method.
There are few drawbacks we have to consider and incorporate into the Method, so
we can apply it on the bias field correction:

• the current objective function with the probabilistic assignment of data points
to classes does not consider dependencies of neighboring data points (intuition:
neighboring data points most probably belong to the same class)

15
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• probabilistic approach required mutually independent intensities The question
now is, how can we incorporate dependencies of neighboring data points?

A solution for the first drawback is to incorporate a regularize (more Information
about regularizer: 2.4.3):

J(x1, x2, ...., xn) =
Nc∑
i=1

n∑
k=1

adi,k||xk − ci||2︸ ︷︷ ︸
data Term

+
Nc∑
i=1

n∑
k=1

λ

#Nk
adi,k

∑
xr∈Nk

||xr − ci||2︸ ︷︷ ︸
data term whith prior;

incorporates neighbourhood

(3.11)

The neighbourhood is considered in the following way: we can say, we sum over all
the pixels(xr) in a local neighbourhood (Nk) and we compute the distance between
the assigned class cr to the currently considered class/cluster ci, then we weight
them also by probabilities (adi,k) and scale them by the size of the neighbourhood
( λ

#Nk ).
Next step is to incorporate the bias field:
We replace the logarithm of ideal intensity value xk using xk = yk−βk and minimize
the optimization problem with respect to the probability a, the cluster ci and the
bias β:

{Â, ĉi, β̂i} = arg min
A,ci,βi

Nc∑
i=1

n∑
k=1

adi,k||xk − ci||2 +
Nc∑
i=1

n∑
k=1

λ

#Nk
adi,k

∑
xr∈Nk

||xr − ci||2

subject to:
Nc∑
i=1

ai,k = 1 for all k = 1, 2, ..., n

with this we try to compute the bias field βk of pixel xk.
This can be done with setting up the optimization with a Lagrange multiplier and
at the end of the day we get close form solutions for all three parameters:

JR =
Nc∑
i=1

n∑
k=1

(
adi,kDi,k + λ

#Nk
adi,kEi,k

)
+

n∑
k=1

ηk(1−
Nc∑
j=1

aj,k) (3.12)

where Di,k = ‖yk − βk − ci‖2 (3.13)

Ei,k =
∑

(yr−βr)∈(N)k

‖yr − βr − ci‖2 (3.14)

16
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the computation of the zero crossings of the gradient results in the following esti-
mator for the partition matrix:

âi,k = 1
Nc∑
j=1

(
#NkDi,k+λEi,k
#NkDj,k+λEj,k

) 1
d−1

(3.15)

..leads to Cluster Prototype Update:

ĉi =

n∑
k=1

adi,k

(
(yk − βk) + λ

#Nk
∑

yr∈Nk
(yr − βr)

)
(1 + λ)

n∑
k=1

adi,k

(3.16)

and to the Bias Field Estimator:

β̂k = yk −

Nc∑
i=1

adi,k · ci
Nc∑
i=1

adi,k

(3.17)

Probabilistic Correction of Bias Fields

Like in the fuzzy C-means-clustering this idea combines the bias field correction with
an simultaneously image segmentation step.
But in this approach we want to compute the unbiased image where tissue classes
of pixels (i.e. segmentation) and the bias field itself are unknown! So we don’t know
which pixel belongs to which class and at the same time we do not know which bias
is present in this particular pixel.
The core Idea of this approach is to use the trick of Marginalization 2.4.4: We will
characterize our Image by assuming the tissue classes are known, the bias field is
known and we have an given observation and at the end we compute a probability
for the given Image by integrate out the bias and integrating out the tissue classes
with this marginalisation trick.
To use the Expectation and Maximization Algorithm have to fit this idea into the
following framework:

• observable random measurement: bias logarithmic intensity value

• hidden random measurement: tissue class for each pixel

• parameter estimation problem: computation of the bias field

Instead of saying the bias field is an unknown parameter, we can also say the bias
field is an hidden random variable, depends on how we want to Setup the estimation

17



DMIP Summary

3. PreProcessing

problem. This is an incomplete data estimation problem.
The used probabilistic model consists of the following components:

• logarithmic intensity Values xi,j = log gi,j belonging to tissue classes Γ are
normally distributed:

p(xi,j |Γ;βi,j) = N (xi,j ;µΓ + βi,j ,ΣΓ) (3.18)

= 1√
|2πΣΓ|

e−
1
2 (xi,j−µΓ−βi,j)TΣ−1

Γ (xi,j−µΓ−βi,j) (3.19)

where

– xi,j : observed log intensity

– ΣΓ: covariance matrix of tissue class Γ

– βi,j : bias at point (i,j)

– µΣ mean log intensity of tissue class Σ

• prior probability of tissue class,i.e. without considering any observation (you
get this from an anatomic Atlas):

p(Γ), for Γ = 1, 2, ..., N (3.20)

• prior density of bias field:

p(βi,j = N (βi,j ; 0,Σβ)) (3.21)

that means the parameters we want to estimate, they also underlay a certain
PDF. For example if you look at the low frequencies changes in MR Images
and if you see its brighter on one side and darker on the other side and fit in
a PDF that characterizes this behaviour.
We Assume the bias field is Normally-Distributed (it works !)

• elimination of unknown tissues class Γ by marginalization:

p(xi,j ;βi,j) =
N∑

Γ=1
p(Γ)p(xi,j |Γ;βi,j) (3.22)

which means we built up a probabilistic model where we assume we know the
class assignment p(Γ)p(xi,j |Γ;βi,j). But we don’t know the class assignment, so
we use marginalization to get rid of the class assignment. For this we multiply
our model with the prior knowledge that a certain tissue class occurs and sum
up over all tissue classes.

18



DMIP Summary

3. PreProcessing

Due to the fact that p(βi,j) is assumed to be Gaussian, the bias field is now considered
as a random variable. We do estimate the bias field β = [βi,j ] by the maximization
of posteriors given the logarithmic image x = [xi,j ]:

β̂ = arg max
β

p(β|x) = arg max
β

(log p(β) + log p(x|β)) (3.23)

with the Assumption that the Intensities are mutually independent we can com-
pute the joint density for the whole Image by multiply over all pixels the probability
that we observe this intensity xi,j given the bias βi,j (commonly used simplification
!):

p(x|β) =
∏
i,j

p(xi,j |βi,j) =
∏
i,j

N∑
Γ=1

p(Γ)p(xi,j |Γ, βi,j) (3.24)

The estimation of the bias field can be done iteratively, but the current model
includes hidden variables. In total, we have to estimate the following parameters
using the EM-Algorithm:

• bias field β

• covariance ΣΓ

• priors p(Γ)

• means µΓ and covariances σΓ

Once all the parameters are estimated, the segmentation result is required. The final
tissue class of each pixel can be estimated by the maximization of the posteriors:

Γ̂ = arg max
Γ

p(Γ|~xi,j ;βi,j) (3.25)

= arg max
Γ

(log p(Γ) + log p(xi,j |Γ;βi,j)) (3.26)

Remark: in practice the bias field is not estimated for all components βi,j . but
usually approximated by a parametric function:

βi,j =
M∑
k=0

θkφk(i, j) (3.27)

where we have θk ∈ R and φk are proper base functions. The bias field estimation
thus reduces to the computation of the θk’s. The Parameters can be estimated with
the EM-Algorithm
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4. Projection and Homogeneous Coordinates

We have to find a representation of the Projection Ray’s to handle the reconstruction
Problem.

4.0.2. Projections

There existing different Projection Models:

• Orthographic projection 
x

y

z

→
x
y

 (4.1)

which is a linear mapping and can be written in homogeneous coordinates.
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• Weak perspective projection 
x

y

z

→
k · x
k · y

 (4.2)

which is a linear mapping and can be written in homogeneous coordinates.

• Perspective projection 
x

y

z

→
f · x/z
f · y/f

 (4.3)

where f is the distance to the image plane to origin.
This is a non-linear mapping of the points !

The projection model of X-Ray systems can be approximated by perspective pro-
jection. A downside is that this model is not a linear one. But we can fix this with
Homogeneous Coordinates.
We will now formulate projections from 3D to 2D using Homogeneous coordinates:

• Orthographic Projection in homogeneous coordinates id defined by:

P̃ =



x

y

z

1


→


x

y

1

 P̃′ =


1 0 0 0

0 1 0 0

0 0 0 1

 P̃ (4.4)

this mapping from P3 → P2 can be simply written in matrix form as:

x

y

z

1


→


x

y

y

⇒


1 0 0 0

0 1 0 0

0 0 0 1





x

y

z

1


=


x

y

1

 (4.5)
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• Perspective Projection in homogeneous coordinates is defined by:

P̃ =


x

y

1

→
f · xz
f · yz

→

fx

fy

z

 P̃′ =


1 0 0 0

0 1 0 0

0 0 1 0

 P̃ (4.6)

where f is the focal length!
this mapping from P3 → P2 can be simply written in matrix form as:

x

y

z

1


→


x

y

z

⇒


1 0 0 0

0 1 0 0

0 0 1 0





x

y

z

1


=


x

y

z

 (4.7)

Both orthographic Projection and Perspective Projection can be written in terms of
a linear Mapping, both matrices differ only in the red marked elements.

4.1. Extrinsic Camera Parameters

Extrinsic Parameters are the translation and rotation which are applied to the Ca-
mera in the 3D-World. There existing 6 extrinsic Parameters: 3 Translation (x, y, z)T

and 3 rotations.
To get an affine linear mapping we can use homogeneous coordinates (2.5.1). Then
it is just a matrix multiplication from the left side:

x′

y′

z′

1


= D



x

y

z

1


(4.8)

where D include the rotation and the translation and is a 4 × 4 Matrix for the
extrinsic Parameters.
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4.2. Intrinsic Camera Parameters

The intrinsic Camera parameters have 5 degrees of Freedom:

• the angle of the CCD-Chip (1 degrees of Freedom)

• the scaling in X-Y Direction, because we have non-rectangular Pixels (in this
scaling the focal length included) (2 degrees of Freedom)

• the ideal coordinate System, which is used for the discussion, has an offset
(u, v)T regarding to the coordinate System of the CCD-Chip(2 degrees of Free-
dom). The origin of the ideal coordinate system is defined by the optical axes
(the X-Ray which hits the image plane orthogonal), this is the offset.

The intrinsic parameters do not change if the camera moves. the mapping for the

Abbildung 4.1.: (u; v) detector and (x; y) image coordinate system

figure above we get by looking at the base-vectors and their difference:

~x =

1

0

y

 1
kx

0

 ~y =

0

1

y

 1
ky

cos θ

1
ky

sin θ

 (4.9)

the required transform from (x, y) to the (u, v) coordinate system is given by the
inverse of the matrix:

T =

 1
kx

1
ky

cos θ

0 1
ky

sin θ


−1

=

kx −kx cos θ
sin θ

0 ky
sin θ

 (4.10)
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We can combine T and the displacement Vector (cx, cy)T using homogeneous coor-
dinates to get the intrinsic camera parameter matrix K:

K =


T11 T12 −cx

T21 T22 −cy

0 0 1

 (4.11)

4.3. Complete Projection

Now we can put all Matrices we have thought about in one step and get the Projec-
tion matrix P:

ρq̃ = P · p̃ = K ·Pproj ·D · p̃ (4.12)

4.4. Calibration

We use a Calibration Pattern with Points where we know the coordinates:

xi =


x1

y1

z1

 ,

x2

y2

z2

 , ...,

xn

yn

zn

 ∈ R3 (4.13)

we observe with our X-ray system a set of 2D-Points:u1

v1

 ,
u2

v2

 , ...,
un
vn

 ∈ R2 (4.14)

the Projection Matrix we want to estimate have 12 entries, whereby we are in ho-
mogeneous coordinate so our solution is unique up to a scaling (we lose here one
degree freedom). So we have eleven unknowns to estimate. In other words we need
eleven equations to solve this, and each Point on the Calibration Pattern gives us
two equations, which means we need at least 5.5 Points to solve this estimation
Problem.
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with our Projection Matrix P we know the mapping between these points, up to
scaling wi:

∀i :


wi · ui

wi · vi

wi

 =̃P



xi

yi

zi

1


⇔


rT1

rT2

rT3





xi

yi

zi

1


=


~rT1 ~xi

~rT2 ~xi

~rT3 ~xi

 =̃


ui

vi

1

 (4.15)

Hint: there is a change from the x component to the complete vector ~xi, take care
of this !
This formulation, where we split up our Projection matrix into the rows ~rT1 , ~rT2 and
~rT3 , leads to:

ui = ~rT1 ~xi
~rT3 ~xi

vi = ~rT2 ~xi
~rT3 ~xi

(4.16)

to get the estimation of the rows, we can set up a least square estimator:

ui −
~rT1 ~xi
~rT3 ~xi

!= 0 vi −
~rT2 ~xi
~rT3 ~xi

!= 0 (4.17)

because of the ratio, this is non-linear, but we can fix this by multiplying with the
denominator:

ui · ~rT3 ~xi − ~rT1 ~xi = 0 (4.18)

vi · ~rT3 ~xi − ~rT2 ~xi = 0 (4.19)

and this is now linear in the components of the projection matrix and we can finally
set up our least square estimator:

P̂ = arg min
P

N∑
i=1

[
ui · ~rT3 ~xi − ~rT1 ~xi

]2
+
[
vi · ~rT3 ~xi − ~rT2 ~xi

]2
(4.20)

subject to: ‖P‖F = 1 (4.21)

because P is unique up to scaling we incorporate the constraint that the Frobenius-
norm1 of P have to be equal to 1.
Rule of thumb: Always optimize differences in the image space resp. in space of
observation.
This rule gets violated when we multiply with the denominator. But after multiply-
ing with he denominator we have a linear optimization problem and get a closed
form solution. Without multiplying with the denominator we have a non-linear opti-

1whichs means the sum of squares of the components of P have to be one
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mization problem which is hard to solve, but we can optimize this with a numerical
approach like Newton-Raphson Method and use the closed-form Solution as an In-
itialization, which leads to better results and due to the Initialization the method
converges fast.
To make life easier, we can rewrite the linear part in matrix form, where the measu-
rement matrix M will include the information on the 3-D calibration points and the
measured 2-D points according the equations in 4.18. The equations in 4.18 looks
then like:

M



p1,1

p1,2

...

p3,3

p3,4


= 0 (4.22)

with this, the calibration problem is reduced to the computation of the nullspace of
measurement matrix M, which can be done using SVD. And due to our knowledge
about the calibration parameters and the constraint we know that the rank of matrix
M is 11 and thereby M have a non-trivial nullspace !
The objective function for this looks like:

‖Mp‖2 → min, subject to ‖p‖2 = 1 (4.23)

which can be done with the Lagrange multiplier method:

pTMTMp− λ(pTp− 1)→ min (4.24)

compute the derivative and the zero crossings:

2MTMp− 2λp = 0 (4.25)

which is nothing else then:
MTMp = λp (4.26)

So the components of the projection matrix P result from the eigenvector belon-
ging to the smallest eigenvalue. As mentioned above this linear estimate of P is an
excellent initialization for the non-linear least square estimation of the projection
matrix!
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4.5. RANSAC

Problem in calibration are inaccuracies in observations and outliers, there are 2 types
of outliers:

• badly localized points

• wrong correspondence

in figure 4.5 we can see the impact of those points.The dotted line „alle “ shows
very good that a outlier like Point 7 can mess up the whole calibration progress.
The RANdom SAmple Consensus, short RANSAC, algorithm try to handle this

problems:

• draw samples uniformly and at random from the input data set

• cardinality of sample set: smallest size sufficient to estimate the model para-
meters compute the model parameters for each element the sample data

• evaluate the quality of the hypothetical models on the full data set

• cost function for the evaluation of the quality of the model

• inliers: data points which agree with the model within an error tolerance

• The hypothesis which gets the most support from the data set: best estimate.

In the case of our calibration this means, draw randomly the minimal amount of
Points (6) we need to estimate P from the data set, do the estimation and then use
the estimated Projection matrix to compute the difference between the projected
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Points and the measured Points. With this we can identify outliers and at the end
we can use all good Points to estimate P without Points which affects the estimate
badly.
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5. Reconstruction

5.1. Thomography

the basic idea of Thomography is to solve the Puzzel in figure 5.1

Abbildung 5.1.: basic Tomography Idea

x1 +x3 = 7

x2 +x4 = 2

x1 +x2 = 5

x3 +x4 = 4

x1 = 3

x2 = 2

x3 = 4

x4 = 0

(5.1)

for real data this kind of method gets very fast very large, imagine a size of 512 ×
512× 512 leads to 134 217 728 unknowns !
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5.1.1. X-Ray attenuation Law

The physical observation about X-Ray projection is that you start with an Intensity
at the X-Ray source I0 and the Object have a density function f(x, y), which gives
you a attenuation value in the space, and then the X-Ray hits the detector where we
measure the Intensity I. The attenuation is characterized by the line Integral along

the line l, where you integrate the function of the object along the line l, which
gives you the measured Intensity I: Beer’s Law describes that in the way that we

I =I0e
−(
∫
f(x,y)dl)

ln
I

I0
=−

∫
f(x, y)dl != p

Abbildung 5.2.: Beer’s Law

have an exponential decay along the line l from the original Value I0 down to I.
computing the function f of the object out of many line Integrals is more or less
the problem of solving a system of integral equations, which is the reconstruction
process. Radon has shown that if we have a infinite number of X-Ray projections
you can reconstruct it properly, in practice a finite number of Projections is enough
for meaningful reconstructions.
If we consider only those points that sit on the line going through the origin (see fig:
5.3), we can describe these lines with this equation:

~nT~x− d = 0 (5.2)

where ~n is the normal vector of the line. This equation is fulfilled if a point lies on
the line and returns the signed distance to the line if not. We can rewrite the line
integral to a double integral over all x- and y-values and preserve the line integral
using Dirac’s delta function 2.3.2. If the points lie on the Line Dirac’s delta funktion
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Abbildung 5.3.: parallel projection rays

Abbildung 5.4.: The x-axis represents s and the y-axis represents the rotation-angle
θ

give use 1 and otherwise 0, which means the double integral collapses down to the
line integral. We get this reformulated formula:

p =
∫
f(x, y)dl =

∫ ∫
f(x, y)δ(x · cos θ + y · sin θ − s)dxdy (5.3)

the parameter s is the offset if we move our straight line from the origin to another
point (such that the line is still parallel to the line though the origin, like in figure
5.3) We can know follow a Detector-element over the acquisition process and build
up a so called Sinogram, where on the x-axis we plot s and on the y-axis the rotation-
angle. A point in the Rotationcenter will be a straight line, a point which is not in the
Rotationcenter will shows a sinusoid-curve (simple Example with 2 Points 5.4). As a
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simple Example we reconstruct the Problem of 5.1, where P are the measurements
and Matrix A represents the linear equations we set up 5.1:

P = AX (5.4)

P =



7

2

5

4


, A =



1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1


, X =



x1

x2

x3

x4


(5.5)

To solve the reconstruction Problem we have to Inverse A (which does not work,
but pseudo-inverse works):

A−1P = X

But a Problem in practise is the size of the Matrix. Imagine we have a Object with
512×512×512 we want to measure and our detector captures Images of size 512×512
and we do 512 projections from different Angles, this leads to the following Size of
the Matrix:

A ∈ R5123×5122×512, 5126 · 4Byte = 65536TB

so measuring a small object with a low resolution still needs a 65536 Terabyte for
Matrix A!

5.1.2. Backprojection

Another idea of reconstruction is the Backprojection. Which means we smear back
additive the measured values along the projection line: in mathematical formulation

Abbildung 5.5.: smear back additive the measured Values
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5. Reconstruction

this means:

Projection: A~x = ~p, ⇒ ATA~x = AT ~p︸ ︷︷ ︸
Backprojection

(5.6)

Applying Backprojection on our introduction Example 5.1 we get: this are obviously

Abbildung 5.6.: smear back additive the measured Values

not the correct Result, but the structure comes back up to scaling, if we look at the
Values from the beginning we see that we have on the left side two higher values and
on the right side to lower values and these value pairs are similar. This structure we
can also see in 5.6.
The mathematical expression of this example is:

B = ATP (5.7)

P =



7

2

5

4


, AT =



1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1


, B =



12

7

11

6


(5.8)

which is only a intermediate-Step to get the result ~x.
In Integral notation we get:

b(x, y) =
π∫

0

p(s, θ) |s=x cos θ+y sin θ︸ ︷︷ ︸
normal vector of the given line

dθ (5.9)

so you sum up - integrate - over all considered rotation angles for a given line.
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6. Exercise1

6. Exercise1

1 SVD

1a

Create a Matrix: A =


11 10 14

12 11 −13

14 13 −66

 Check the determinant of this matrix. Com-

pute the inverse matrix of A without using MATLAB command inv:
1 A = [11 10 14 ;
2 12 11 -13;
3 14 13 -66];
4

5 [U S V] = svd(A);%make the SVDecomposition
6

7 Ainverse = V * S^(-1) * U’ %compute the pseudo-inverse . If the matrix is invertible
8 %then the pseudo-invers will be the inverse

Compare the result to inv(A) → it’s the same
How do we get the condition number and what does the condition number express?
The condition Number can be computed with SVD: divide the largest number of S
by the smallest. (Hint: the first divided by the last element on the diagonal ofS).

1 kappaA = S(1,1) / S(length(S),length(S))

• a condition number near to 1 means the matrix is well-conditioned.

• a condition number which far away from 1 means the matrix is.

1b

With the command eigshow you can see how the Matrix affect the unit-ball (for
2D). Because you use the uni-vectors for this you can see in a way the geometrical
representation of the Matrix.
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1c

If you set the threshold ε = 10−3, you get a rank deficiency. How can you get the
null space and the rank of the Matrix A? The null space determine all vectors which
fulfil the following equation (the zero-vector is the trivial case): A~x = 0 You can use
SVD to determine the null space. Take the collumn-vector of V which is related to
the zero-entries on the diagonal of S. In our example case, the last diagonal entry
will be zero after you applied the Threshold. Which means the last collumn of V is
the null space for Matrix A.

1 kernelA = V(:,3)

The rank of a Matrix can also be determine with SVD. Just count the non-zero
entries in the diagonal of S:

1 %The rank of the matrix are all non-zero entries on the diagonal of S
2 rankA = nnz(S)
3 %The range are the related collumns in U to the non-zero entries in S
4 rangeA = U(:,1:2)

The range of the Matrix A is then the collumn-vectors of U which are related to
the non-zero entries of S.

1.1

Show that a variation of elements of ~b by 0.1% implies a change in ~x by 241%.
1 b = [1.001;0.999;1.001];
2 x = Ainverse * b
3 %Console:
4 x =
5 -0.6830
6 0.8430
7 0.0060
8

9 %changing b by 0.1%
10 b = [1.002001;0.999;1.001];
11 x = Ainverse * b
12 %Console:
13 x =
14 -1.2406
15 1.4536
16 0.0080
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